The development of a new technique for high spatial and temporal resolution film thickness measurement in oil-water flow is presented. A capacitance measurement system is proposed to measure thin water films near to the wall pipe. A planar sensor was chosen for sensing and some geometries were compared using finite elements method (FEM). The penetration depth, the sensitivity, the minimum spatial resolution (high spatial resolution) and the quasi-linear curve were the analyzed characteristics. Dispersed and unstable-annular oil-water flows patterns were studied in a 12-m long vertical glass pipe, with 50.8 mm of internal diameter, using mineral oil (828 kg/m3 of density and 220 mPa s of viscosity) and tap water. The experimental work was carried out in the multiphase-flow facilities of The Thermal-Fluids Engineering Laboratory (NETeF) of EESC-USP. Experiments with a high-speed video camera and the proposed capacitance system were performed to obtain images of the oil-water flow near the pipe wall. A pre-processing enhancement algorithm and a combined segmentation algorithm are proposed and allowed the measurement of characteristic space and time averaged water film thickness.Experimental results of the capacitive technique showed that the system could measure thickness between 400 µm and 2200 µm. It was possible to recognize and characterize typical behaviors of the two different flow patterns studied. Unstable-annular flow can be described by huge fluctuations on the flow direction and perimeter direction, and big interfacial structures (drops).On the other hand, dispersed flow has tiny fluctuations on the flow direction and perimeter direction, and smaller interfacial structures (droplets). A typical interfacial topology is observed near the pipe wall and it can be treated as an interface between wall and core regions. It is analyzed in time and frequency domains: amplitude, velocity and wavelength quantities can be related to the collected signal at each pair transmitter-receiver of the studied sensor. Correlations for the interfacial-structure velocity were found for dispersed oil-in-water flow and unstableannular flow.