We present an investigation of molecular permeation of gases through nanoporous graphene membranes via molecular dynamics simulations; four different gases are investigated, namely helium, hydrogen, nitrogen, and methane. We show that in addition to the direct (gas-kinetic) flux of molecules crossing from the bulk phase on one side of the graphene to the bulk phase on the other side, for gases that adsorb onto the graphene, significant contribution to the flux across the membrane comes from a surface mechanism by which molecules cross after being adsorbed onto the graphene surface. Our results quantify the relative contribution of the bulk and surface mechanisms and show that the direct flux can be described reasonably accurately using kinetic theory, provided the latter is appropriately modified assuming steric molecule-pore interactions, with gas molecules behaving as hard spheres of known kinetic diameters. The surface flux is negligible for gases that do not adsorb onto graphene (e.g., He and H2), while for gases that adsorb (e.g., CH4 and N2) it can be on the order of the direct flux or larger. Our results identify a nanopore geometry that is permeable to hydrogen and helium, is significantly less permeable to nitrogen, and is essentially impermeable to methane, thus validating previous suggestions that nanoporous graphene membranes can be used for gas separation. We also show that molecular permeation is strongly affected by pore functionalization; this observation may be sufficient to explain the large discrepancy between simulated and experimentally measured transport rates through nanoporous graphene membranes.
Graphene provides a possibility where gas adsorption energy is comparable with molecular collision energy for physically adsorbed gases, resulting in the incompetence of the traditional hopping model to describe graphene-related surface diffusion phenomena. By calculating surface diffusion coefficients based on the Einstein equation, we exactly demonstrate that the gas diffusion on a graphene surface is a two-dimensional gas behavior mainly controlled by the collisions between adsorbed molecules. The surface diffusion on the graphene film just follows the bulk diffusion qualitatively, namely the diffusion coefficients decrease with increasing gas pressure. Quantitatively, the surface diffusion coefficients are lower than the bulk diffusion coefficients, predicted using the hard sphere model, owing to the restriction of graphene films. The reduction in diffusion coefficient is related to the simultaneously suppressed average frequency of molecular collisions and the average travelling distance between successive collisions. In addition, a lower diffusion coefficient on a hydrogen-functionalized graphene surface is identified, caused by the blocking effects of chemical functional groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.