2016
DOI: 10.1016/j.ijforecast.2015.12.005
|View full text |Cite
|
Sign up to set email alerts
|

The forecast combination puzzle: A simple theoretical explanation

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

5
98
1
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 211 publications
(105 citation statements)
references
References 16 publications
5
98
1
1
Order By: Relevance
“…A rigorous attempt to explain why simple average weights often outperform more sophisticated forecast combination techniques is provided in a simulation study by Smith and Wallis (2009), who ascribe this surprising empirical finding to the effect of finite-sample error in estimating the combination weights. Recently, Claeskens et al (2016) provide a theoretical argumentation to these empirical findings. The authors make the case that lower estimation noise, when the weights are determined rather than estimated, goes a long way in explaning the puzzle.…”
Section: Simple Combination Methodsmentioning
confidence: 99%
“…A rigorous attempt to explain why simple average weights often outperform more sophisticated forecast combination techniques is provided in a simulation study by Smith and Wallis (2009), who ascribe this surprising empirical finding to the effect of finite-sample error in estimating the combination weights. Recently, Claeskens et al (2016) provide a theoretical argumentation to these empirical findings. The authors make the case that lower estimation noise, when the weights are determined rather than estimated, goes a long way in explaning the puzzle.…”
Section: Simple Combination Methodsmentioning
confidence: 99%
“…Following [21][22][23][24][25][26][27][28][29], the forecast quality is evaluated by R 2 os , which is the percent reduction of MSPE of the given model compared to the benchmark model, given by:…”
Section: Forecast Evaluationmentioning
confidence: 99%
“…In our research, ω 1 � ω 2 � 0.5. Although it seems quite simple, compared with other complex weighting schemes, it is usually regarded as a robust method especially in the real prediction circumstance [24,26].…”
Section: Equal Weight (Ew)mentioning
confidence: 99%
“…Suppose the forecasts from two individual models are unbiased, with σ 2 1 and σ 2 2 as their individual variance, and σ 12 as their covariance. By minimizing the variance of forecasts, the optimal weights will then be written as [24]…”
Section: Variance Based (Var)mentioning
confidence: 99%
See 1 more Smart Citation