2012
DOI: 10.1007/s00446-012-0160-1
|View full text |Cite
|
Sign up to set email alerts
|

The Forgiving Graph: a distributed data structure for low stretch under adversarial attack

Abstract: We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds to each such change by quick "repairs," which consist of adding or deleting a small number of edges. These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing node degrees by… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
51
0

Year Published

2013
2013
2020
2020

Publication Types

Select...
5
3
2

Relationship

3
7

Authors

Journals

citations
Cited by 34 publications
(51 citation statements)
references
References 22 publications
0
51
0
Order By: Relevance
“…In this setting, the distributed local algorithm is allowed to add edges to the structure following adversarial removal of vertices or edges, in order to preserve certain graph properties (e.g., diameter, maximum degree, expansion) of the original network (i.e., before the attack), cf. [26,50,51]. Note that this approach requires the network to be reconfigurable, in the sense that it should be possible to change the network topology.…”
Section: Our Techniquementioning
confidence: 99%
“…In this setting, the distributed local algorithm is allowed to add edges to the structure following adversarial removal of vertices or edges, in order to preserve certain graph properties (e.g., diameter, maximum degree, expansion) of the original network (i.e., before the attack), cf. [26,50,51]. Note that this approach requires the network to be reconfigurable, in the sense that it should be possible to change the network topology.…”
Section: Our Techniquementioning
confidence: 99%
“…In each step, the adversary either deletes or adds a node [16]. After each deletion, the algorithm gets to add some new edges to the graph, as well as deleting old ones.…”
Section: End Formentioning
confidence: 99%
“…A basic prerequisite for an overlay network which allows all pairs of nodes to exchange information is that it is connected, and a fundamental problem for overlay networks is to preserve connectivity while nodes are leaving, i.e., the nodes requesting to leave the overlay network are eventually excluded from it without disconnecting any staying nodes. If the overlay is in a well-defined state, scenarios in which the rate of node departures and arrivals is limited have already been studied [1,5,7]. However, due to permanent or transient failures a distributed system may rarely be in an ideal state, so it would be desirable to find self-stabilizing protocols for the exclusion of leaving nodes, i.e., from any initial state connectivity is preserved.…”
Section: Introductionmentioning
confidence: 98%