Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. In particular, the seemingly obvious lower bounds of Ω(m) messages, where m is the number of edges in the network, and Ω(D) time, where D is the network diameter, are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results, showing that even Ω(n), where n is the number of nodes in the network, is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms, except for the restricted case of comparison algorithms, where it was also required that nodes may not wake up spontaneously and that D and n were not known. We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (namely, algorithms that work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. The answer is known to be negative in the deterministic setting. We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.
Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. In particular, the seemingly obvious lower bounds of Ω(m) messages, where m is the number of edges in the network, and Ω(D) time, where D is the network diameter, are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results, showing that even Ω(n), where n is the number of nodes in the network, is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms, except for the restricted case of comparison algorithms, where it was also required that nodes may not wake up spontaneously and that D and n were not known. We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (namely, algorithms that work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. The answer is known to be negative in the deterministic setting. We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.
We consider the problem of self-healing in reconfigurable networks (e.g. peer-to-peer and wireless mesh networks) that are under repeated attack by an omniscient adversary and propose a fully distributed algorithm, Xheal , that maintains good expansion and spectral properties of the network, also keeping the network connected. Moreover, Xheal , does this while allowing only low stretch and degree increase per node. The algorithm heals global properties like expansion and stretch while only doing local changes and using only local information. We use a model similar to that used in recent work on self-healing. In our model, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds by quick "repairs," which consist of adding or deleting edges in an efficient localized manner.These repairs preserve the edge expansion, spectral gap, and network stretch, after adversarial deletions, without increasing node degrees by too much, in the following sense. At any point in the algorithm, the expansion of the graph will be either 'better' than the expansion of the graph formed by considering only the adversarial insertions (not the adversarial deletions) or the expansion will be, at least, a constant. Also, the stretch i.e. the distance between any pair of nodes in the healed graph is no more than a O(log n) factor. Similarly, at any point, a node v whose degree would have been d in the graph with adversarial insertions only, will have degree at most O(κd) in the actual graph, for a small parameter κ. We also provide bounds on the second smallest eigenvalue of the Laplacian which captures key properties such as mixing time, conductance, congestion in routing etc. Our distributed data structure has low amortized latency and bandwidth requirements. Our work improves over the self-healing algorithms Forgiving tree [PODC 2008] and Forgiving graph [PODC 2009] in that we are able to give guarantees on degree and stretch, while at the same time preserving the expansion and spectral properties of the network. * A shorter version of this paper published at PODC 2011,
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds to each such change by quick "repairs," which consist of adding or deleting a small number of edges. These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose distance would have been in the graph formed by considering only the adversarial insertions (not the adversarial deletions), will be at distance at most log n in the actual graph, where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degree would have been d in the graph with adversarial insertions only, will have degree at most 3d in the actual graph. Our distributed data structure, which we call the Forgiving
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.