1986
DOI: 10.1115/1.3242550
|View full text |Cite
|
Sign up to set email alerts
|

The Functional Role of Wing Corrugations in Living Systems

Abstract: Questions concerning the functional role of spanwise wing corrugation in living systems are experimentally investigated. Attention was initially directed to this problem by observation of the irregular shape of many insect wings as well as other studies indicating higher lift on these wings. First, a flow visualization scheme was used to observe and photograph streamlines around two different wing sections. One of these, a sheet metal model with geometry matching that of a butterfly wing, was studied at a chor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
1
3

Year Published

2010
2010
2020
2020

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 31 publications
(23 citation statements)
references
References 0 publications
0
19
1
3
Order By: Relevance
“…The upper surface corrugation of swift hand wings resembles the corrugation of dragonfly airfoils, but is concentrated towards the leading edge and has a 5-10 times smaller amplitude (Kesel, 2000;Jongerius and Lentink, 2010;Lentink and de Kat, 2014). Corrugated dragonfly airfoils also generate laminar separation bubbles in the valleys formed by the corrugation (Rees, 1975a;Buckholz, 1986;Lentink and Gerritsma, 2003;Vargas and Mittal, 2004;Kim et al, 2009;Seifert, 2009, 2010;Murphy and Hu, 2010;Hord and Liang, 2012); such effects of corrugation have not been demonstrated before in birds (Elimelech and Ellington, 2013). The similarity in laminar separation bubbles found on dragonfly and swift wings is remarkable, considering dragonflies operate at Re below 10,000 for which experiments show the boundary layer flow remains laminar (Levy and Seifert, 2009), whereas the flow over hummingbird wings at Re=15,000 and α=10 deg can be turbulent in the separated shear layer above the surface (Elimelech and Ellington, 2013).…”
Section: Discussionmentioning
confidence: 99%
“…The upper surface corrugation of swift hand wings resembles the corrugation of dragonfly airfoils, but is concentrated towards the leading edge and has a 5-10 times smaller amplitude (Kesel, 2000;Jongerius and Lentink, 2010;Lentink and de Kat, 2014). Corrugated dragonfly airfoils also generate laminar separation bubbles in the valleys formed by the corrugation (Rees, 1975a;Buckholz, 1986;Lentink and Gerritsma, 2003;Vargas and Mittal, 2004;Kim et al, 2009;Seifert, 2009, 2010;Murphy and Hu, 2010;Hord and Liang, 2012); such effects of corrugation have not been demonstrated before in birds (Elimelech and Ellington, 2013). The similarity in laminar separation bubbles found on dragonfly and swift wings is remarkable, considering dragonflies operate at Re below 10,000 for which experiments show the boundary layer flow remains laminar (Levy and Seifert, 2009), whereas the flow over hummingbird wings at Re=15,000 and α=10 deg can be turbulent in the separated shear layer above the surface (Elimelech and Ellington, 2013).…”
Section: Discussionmentioning
confidence: 99%
“…Ortsfeste Wirbel hinter Flügeladern oder in Furchen können den Widerstand herabsetzen, indem sie eine reibungsarme Unterschicht („Rollenlager“) für die Außenströmung bilden und diese stabilisieren (Abbildung ). Bei Windkanaltests wurde hinter den ortsfesten Wirbeln ein Wiederanliegen der bereits abgelösten Strömung beobachtet .…”
Section: Weniger Widerstand Durch Wirbelunclassified
“…0,5 bis 1 mm) ist bei V = 5 m/s eine Re‐Zahl von 170–370 zuzuordnen. Untersuchungen haben gezeigt, dass der Leebereich bei dieser Re‐Zahl von stationären Laminarwirbeln ausgefüllt wird (Abbildung , ). Nach Windkanaluntersuchungen halten die stationären Wirbel die Strömung laminar anliegend und erhöhen damit den Auftrieb.…”
Section: Beispiele Aus Der Naturunclassified
“…• wind transport pollutant in streets surrounded with buildings (Chabni 1997); • cooling systems over integrated circuits made of parallelepipedic electronics components; • door gaps on motor vehicles (Reulet et al 2002); • insect wings with small cavities or riblets on a wing, increasing lift without drag penalty (Buckholz 1986); • hydrodynamic bearings and lubricating systems (Braun et al 1993); • artificial aortic devices or blood aneurysms (Liou and Liao 1997).…”
Section: Introductionmentioning
confidence: 99%