1988
DOI: 10.1016/0021-8693(88)90032-4
|View full text |Cite
|
Sign up to set email alerts
|

The Galois structure of the trace form in extensions of odd prime degree

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
18
0
4

Year Published

1990
1990
2016
2016

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 21 publications
(22 citation statements)
references
References 6 publications
0
18
0
4
Order By: Relevance
“…Dans [6][7][8] on compare (A K , Tr^o) et (ZG, T t ), et en particulier on se demande quand ils sont isome'triques.…”
unclassified
See 2 more Smart Citations
“…Dans [6][7][8] on compare (A K , Tr^o) et (ZG, T t ), et en particulier on se demande quand ils sont isome'triques.…”
unclassified
“…II est montre" dans [6][7][8] que si G est abelien, alors A K est ZG-libre si et seulement si l'extension K/Q est peu ramifie'e: une extension abelienne K/Q est dite peu ramifiee si les premiers p de Q qui se ramifient sauvagement dans K/Q ont un indice de ramification e"gal a p: e(p) =p. II s'avSre que dans le cas abe"lien l'isomorphisme de ZG-modules entre A K et ZG (sans formes) entraine l'existence d'une isome'trie e"quivariante.…”
unclassified
See 1 more Smart Citation
“…We here show that the construction in [10] (of which a detailed exposition has been provided in [12,Section 5]) of lattices that belong in a cyclic Galois extension K of prime degree q over Q, actually gives without any modification orthogonal lattices for any odd degree n. We will follow the exposition in [12] closely, retaining even the notation in [12], and show that the proofs there only use the fact that n is odd, and not that it is an odd prime.…”
Section: Appendix II Orthogonal Lattices In O K Where K/q Is Cyclicmentioning
confidence: 99%
“…Recently, the authors in [12], Section V, give a detailed exposition of a previous result in [10] of an explicit construction of q-dimensional orthogonal lattices that belong in a q-degree cyclic Galois extension K ′ over Q, with the restriction that q be an odd prime integer. We here show that the same construction actually gives n 1 -dimensional orthogonal lattices in O ′ K , for any odd integer n 1 .…”
Section: ) Orthogonal Lattices In a Cyclic Galois Extension Over Q Omentioning
confidence: 99%