The study introduces a new atmosphere-land-aquifer coupled model and evaluates terrestrial water storage (TWS) simulations for Southern California between 2007 and 2016. It also examines the relationship between precipitation, groundwater, and soil moisture anomalies for the two primary aquifer systems in the study area, namely the Coastal Basin and the Basin and Range aquifers. Two model designs are introduced, a partially-coupled model forced by reanalysis atmospheric data, and a fully-coupled model, in which the atmospheric conditions were simulated. Both models simulate the temporal variability of TWS anomaly in the study area well (R2 ≥ 0.87, P < 0.01). In general, the partially-coupled model outperformed the fully-coupled model as the latter overestimated precipitation, which compromised soil and aquifer recharge and discharge. Simulations also showed that the drought experienced in the area between 2012 and 2016 caused a decline in TWS, evapotranspiration, and runoff of approximately 24%, 65%, and 11%, and 20%, 72% and 8% over the two aquifer systems, respectively. Results indicate that the models first introduced in this study can be a useful tool to further our understanding of terrestrial water storage variability at regional scales.