Over several decades, improving the accuracy of Sea-Surface Temperatures (SSTs) derived from satellites has been a subject of intense research, and continues to be so. Knowledge of the accuracy of the SSTs is critical for weather and climate predictions, and many research and operational applications. In 2015, the operational Japanese MTSAT-2 geostationary satellite was replaced by the Himawari-8, which has a visible and infrared imager with higher spatial and temporal resolutions than its predecessor. In this study, data from both satellites during a three-month overlap period were compared with subsurface in situ temperature measurements from the Tropical Atmosphere Ocean (TAO) array and self-recording thermometers at the depths of corals of the Great Barrier Reef. Results show that in general the Himawari-8 provides more accurate SST measurements compared to those from MTSAT-2. At various locations, where in situ measurements were taken, the mean Himawari-8 SST error shows an improvement of~0.15 K. Sources of the differences between the satellite-derived SST and the in situ temperatures were related to wind speed and diurnal heating.