We present multiepoch, large-scale (∼2000 arcmin 2 ), fairly deep (∼16 μJy), high-resolution (∼1″) radio observations of the Perseus star-forming complex obtained with the Karl G. Jansky Very Large Array at frequencies of 4.5 and 7.5 GHz. These observations were mainly focused on the clouds NGC 1333 and IC 348, although we also observed several fields in other parts of the Perseus complex. We detect a total of 206 sources, 42 of which are associated with young stellar objects (YSOs). The radio properties of about 60% of the YSOs are compatible with a nonthermal radio emission origin. Based on our sample, we find a fairly clear relation between the prevalence of nonthermal radio emission and evolutionary status of the YSOs. By comparing our results with previously reported X-ray observations, we show that YSOs in Perseus follow a Güdel-Benz relation with κ = 0.03, consistent with other regions of star formation. We argue that most of the sources detected in our observations but not associated with known YSOs are extragalactic, but provide a list of 20 unidentified radio sources whose radio properties are consistent with being YSO candidates. Finally, we also detect five sources with extended emission features that can clearly be associated with radio galaxies.