We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with A V 7 mag visible from the northern hemisphere in emission from NH 3 and other key molecular tracers. This first release includes the data for four regions in Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH 3 emission to dust continuum emission from Herschel, and find that the two tracers correspond closely. NH 3 is present in over 60 % of lines-of-sight with A V 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH 3 is detected toward ∼ 40 % of lines-of-sight with A V 7 mag. Moreover, we find that the NH 3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH 3 column densities through forward modeling of the hyperfine structure of the NH 3 (1,1) and (2,2) lines. We show that the NH 3 velocity dispersion, σ v , and gas kinetic temperature, T K , vary systematically between the regions included in this release, with an increase in both the mean value and spread of σ v and T K with increasing star formation activity. The data presented in this paper are publicly available.
We use gas temperature and velocity dispersion data from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between selfgravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure confined.
We measure chemical abundance ratios and radial velocities in four massive (i.e., young) [α/Fe]-rich red giant stars using high-resolution high-S/N spectra from ES-PaDOnS fed by Gemini-GRACES. Our differential analysis ensures that our chemical abundances are on the same scale as the Alves-Brito et al. (2010) study of bulge, thin and thick disk red giants. We confirm that the program stars have enhanced [α/Fe] ratios and are slightly metal poor. Aside from lithium enrichment in one object, the program stars exhibit no chemical abundance anomalies when compared to giant stars of similar metallicity throughout the Galaxy. This includes the elements Li, O, Si, Ca, Ti, Cr, Ni, Cu, Ba, La, and Eu. Therefore, there are no obvious chemical signatures that can help to reveal the origin of these unusual stars. While our new observations show that only one star (not the Li-rich object) exhibits a radial velocity variation, simulations indicate that we cannot exclude the possibility that all four could be binaries. In addition, we find that two (possibly three) stars show evidence for an infrared excess, indicative of a debris disk. This is consistent with these young [α/Fe]-rich stars being evolved blue stragglers, suggesting their apparent young age is a consequence of a merger or mass transfer. We would expect a binary fraction of ∼50% or greater for the entire sample of these stars, but the signs of the circumbinary disk may have been lost since these features can have short timescales. Radial velocity monitoring is needed to confirm the blue straggler origin.
We present the observation and analysis of newly discovered coherent structures in the L1688 region of Ophiuchus and the B18 region of Taurus. Using data from the Green Bank Ammonia Survey, we identify regions of high density and near-constant, almost-thermal velocity dispersion. We reveal 18 coherent structures are revealed, 12 in L1688 and 6 in B18, each of which shows a sharp “transition to coherence” in velocity dispersion around its periphery. The identification of these structures provides a chance to statistically study the coherent structures in molecular clouds. The identified coherent structures have a typical radius of 0.04 pc and a typical mass of 0.4 M ☉, generally smaller than previously known coherent cores identified by Goodman et al., Caselli et al., and Pineda et al. We call these structures “droplets.” We find that, unlike previously known coherent cores, these structures are not virially bound by self-gravity and are instead predominantly confined by ambient pressure. The droplets have density profiles shallower than a critical Bonnor–Ebert sphere, and they have a velocity (V LSR) distribution consistent with the dense gas motions traced by NH3 emission. These results point to a potential formation mechanism through pressure compression and turbulent processes in the dense gas. We present a comparison with a magnetohydrodynamic simulation of a star-forming region, and we speculate on the relationship of droplets with larger, gravitationally bound coherent cores, as well as on the role that droplets and other coherent structures play in the star formation process.
We use Green Bank Ammonia Survey observations of NH 3 (1,1) and (2,2) emission with 32 FWHM resolution from a ∼ 10 pc 2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH 3 data results in 22 top-level structures, which reside within 13 lower-level, parent structures. The structures are compact (0.01 pc R ef f 0.1 pc) and are spatially correlated with the highest H 2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18.2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH 3 column density, -2derived from detailed modeling of the NH 3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel -identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median T dust and T K measurements of 11.7 ± 1.1 K and 10.3 ± 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel -identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (2 0 − 1 0 ) and HC 5 N (9 − 8) emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH 3 (1,1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.