Background
Fluoropyrimidines and platinum are still widely used for colorectal cancer (CRC) management. Several studies have reported that mutations of dihydropyrimidine dehydrogenase (DPYD) and glutathione S-transferase pi-1 (GSTP1) polymorphisms are related to chemotherapy-related adverse events. In the present study, we purposed to assess the impact of DPYD and GSTP1 variants on the toxicity of adjuvant chemotherapy risk among the Hakka population, minimize adverse events, and to maximize therapy outcome for individualized treatment.
Methods
Genotyping was examined in 104 patients diagnosed with CRC cases and receiving fluoropyrimidine and platinum drug-based chemotherapy regimen by direct sequencing of DPYD and GSTP1 polymorphisms. Three DPYD variants including *2A, *5A, *9A, and GSTP1 c.313A>G were analyzed and clinical outcomes were assessed.
Results
The data suggest that the incidence of DPYD*5A, DPYD*9A, and GSTP1 c.313A>G variants were 38.4%, 24%, and 32.7%, respectively. DPYD*2A variant was not found. A total of 23 patients (22.1%) suffered severe vomiting and 19 patients (18.3%) suffered severe anemia. DPYD*5A polymorphism was found significantly associated with grade 3/4 ulceration (p = 0.001). GSTP1 was determined to be an independent risk factor for severe vomiting and skin ulceration (p = 0.042 and p = 0.018, respectively). Patients with GSTP1 c. 313A>G mutant type contributed to a higher risk for grade severe toxicity compared with wild genotype (p = 0.027). Nevertheless, no significant difference was found between patients with DPYD*2A, *5A, and *9A for chemotherapeutic toxicity.
Conclusions
The results demonstrated that GSTP1 polymorphisms were useful predictors of severe events. Screening of single-nucleotide polymorphisms of GSTP1 in colorectal cancer patients before chemotherapy may help to realize personalized therapy.