In the originally published version of this article, Daniel Geiszler's last name was misspelled. This error has now been corrected in the article online.
Two experiments were conducted to evaluate the effects of a complex Lactobacilli preparation on performance, resistance to E. coli infection and gut microbial flora of weaning pigs. In exp. 1, twelve pigs (7.65±1.10 kg BW), weaned at 28 d, were randomly allotted into 2 groups and placed in individual metabolic cages. During the first 7 d, one group of pigs was provided ad libitum access to water containing 10 5 colony forming units (CFU) Lactobacilli per ml and the control group was provided tap water. The Lactobacilli preparation included Lactobacillus gasseri, L. reuteri, L. acidophilus and L. fermentum, which were isolated from the gastrointestinal (GI) tract mucosa of weaning pigs. On d 8, 20 ml of 10 8 CFU/ml E. coli solution (serovars K99, K88 and 987P at the ratio of 1:1:1) was orally administered to each pig. Diarrhea scores and diarrhea incidence were recorded from d 7 to 14. On d 14, pigs were euthanized and digesta and mucosa from the stomach, duodenum, jejunum, ileum, cecum and colon were sampled using aseptic technique to determine microflora by culturing bacteria in selective medium. The results showed that Lactobacilli treatment significantly decreased E. coli and aerobe counts (p<0.01) but increased Lactobacilli and anaerobe counts (p<0.01) in digesta and mucosa of most sections of the GI tract. A 66 and 69.1% decrease in diarrhea index and diarrhea incidence, respectively, was observed in the Lactobacilli treated group. In exp. 2, Thirty-six crossbred Duroc×Landrace×Yorkshire piglets, weaned at 28±2 days, were selected and randomly allocated into 2 groups. There were 18 piglets in each group, 3 piglets in one pen and 6 replicates in each treatment with 3 pens of barrow and 3 pens of female piglet in each treatment. Piglets had ad libitum access to feed and water. The initial body weight of piglet was 7.65±1.09 kg. Dietary treatments included a non-medicated basal diet with Lactobacilli (10 5 CFU/g diet) or carbadox (60 mg/kg) as control. On d 21, six pigs per group (one pig per pen) were euthanized. Ileal digesta was collected to determine apparent amino acid digestibility. Microflora content was determined similarly to exp.1. The results showed that Lactobacilli treatment significantly improved average daily feed intake (ADFI) of pigs compared to carbadox (p<0.05) during the first 2 wks after weaning and average daily gain (ADG) and ADFI increased significantly (p<0.05) from d 8 to 14. Nitrogen and total phosphorus digestibility also increased (p<0.05). Bacterial counts were similar to exp. 1. The results indicate that the complex Lactobacilli preparation improved performance for 2 wks after weaning, enhanced resistance to E. coli infection, and improved microbial balance in the GI tract.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo). Subsequently, we showed that the inhibition of poly(I·C)-induced IFN- production by PRRSV was dependent on the blocking of NF-B signaling pathways. By screening PRRSV nonstructural and structural proteins, we demonstrated that nonstructural protein 4 (nsp4), a viral 3C-like serine protease, significantly suppressed IFN- expression. Moreover, we verified that nsp4 inhibited NF-B activation induced by signaling molecules, including RIG-I, VISA, TRIF, and IKK. nsp4 was shown to target the NF-B essential modulator (NEMO) at the E349-S350 site to mediate its cleavage. Importantly, nsp4 mutants with defective protease activity abolished its ability to cleave NEMO and inhibit IFN- production. These findings might have implications for our understanding of PRRSV pathogenesis and its mechanisms for evading the host immune response. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a major agent of respiratory diseases in pigs.Like many other viruses, PRRSV has evolved a variety of strategies to evade host antiviral innate immunity for survival and propagation. In this study, we show that PRRSV nsp4 is a novel antagonist of the NF-B signaling pathway, which is responsible for regulating the expression of type I interferons and other crucial cytokines. We then investigated the underlying mechanism used by nsp4 to suppress NF-B-mediated IFN- production. We found that nsp4 interfered with the NF-B signaling pathway through the cleavage of NEMO (a key regulator of NF-B signaling) at the E349-S350 site, leading to the downregulation of IFN- production induced by poly(I·C). The data presented here may help us to better understand PRRSV pathogenesis.
Results from recent studies suggest that aberrant microRNA expression is common in numerous cancers. Although miR-338-3p has been implicated in hepatocellular carcinoma, its role in gastric cancer is unknown. To this end, we report that miR-338-3p is downregulated in both gastric cancer tissue and cell lines. Forced expression of miR-338-3p inhibited cell proliferation and clonogenicity and induced a G 1 -S arrest as well as apoptosis in gastric cancer cells. Furthermore, P-Rex2a (PREX2) was identified as a direct target of miR-338-3p, and silencing P-Rex2a resulted in the same biologic effects of miR-338-3p expression in gastric cancer cells. Furthermore, both enforced expression of miR-338-3p or silencing of P-Rex2a resulted in activation of PTEN, leading to a decline in AKT phosphorylation. Also, miR-338-3p markedly inhibited the in vivo tumorigenicity in a nude mouse xenograft model system. These results demonstrate that miR-338-3p affects gastric cancer progression through PTEN-AKT signaling by targeting P-Rex2a in gastric cancer cells, which posits miR-338-3p as a novel strategy for gastric cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.