The contact mechanics model of the metal lens-type sealing gasket is established on the basis of Hertz theory on the macroscopical scale in this paper. The relationship among sealing width, contact pressure, and preload is solved. Based on the structural characteristics of the subsea collet connector, the self-locking characteristics are analyzed to determine the gain coefficient of the sealing structure for the loading thrust. On the microscopic scale, the contact characteristics of the turning lens-type sealing gasket and the hub structure are analyzed by the equivalent replacement of the peak cut coefficient of the one-dimensional sinusoidal wave. The influence of different leakage forms on sealing performance is discussed from both radial and circumferential leakage, and the leakage rate of the lens-type sealing structure is calculated. The hydrostatic pressure experiment of the subsea collet connector with lens-type sealing gasket is carried out, and the correctness of the theoretical analysis is verified from the results of the pressure maintaining, sealing width measurement, and preload conversion.