Human KCNH2 are key channels governing cardiac repolarization. Here, a 1.5 Å resolution structure of their cyclic nucleotide-binding homology domain is presented. Structural analysis and electrophysiological validation reveal a novel salt-bridge, playing an important role in hKCNH2 functional regulation.3
AbstractHuman KCNH2 (hKCNH2, Ether-à-go-go (EAG)-Related Gene, hERG) are best known for their role in cardiac action potentials repolarization and have key roles in various pathologies. As other KCNH family members, hKCNH2 contains a unique intracellular complex crucial for channel function, consisting of an N-terminal eag domain and a C-terminal cyclic nucleotide-binding homology domain (CNBHD). Previous studies demonstrated that the CNBHD is occupied by an intrinsic ligand motif (ILM), in a self-liganded conformation, providing a structural mechanism for the lack of KCNH channels regulation by cyclic nucleotides. While significant advancements in structural and functional characterizations of the CNBHD of KCNH channels have been made, a high-resolution structure of the hKCNH2 intracellular complex was missing. Here, we report the 1.5 Å resolution structure of the hKCNH2 channel CNBHD. The structure reveals the canonical fold shared by other KCNH family members, where the spatial organization of the ILM is preserved within the b-roll region. Moreover, measurements of small-angle X-ray scattering profile in solution, as well as comparison with a recent nuclear magnetic resonance (NMR) analysis of hKCNH2, revealed high agreement with the structure, indicating an overall low flexibility in solution. Importantly, we identified a novel salt-bridge (E807-R863), which was not previously resolved in the NMR and cryogenic electron microscopy (cryo-EM) structures. Strikingly, electrophysiological analysis of charge reversal mutations revealed its crucial role for hKCNH2 function. Moreover, comparison with other KCNH members revealed the structural conservation of this salt-bridge, consistent with its functional significance.Together with the available structure of the mouse KCNH1 intracellular complex, and previous electrophysiological and spectroscopic studies of KCNH family members, we propose that this salt-bridge serves as a strategically positioned linchpin to support both the spatial organization of the ILM and the maintenance of the intracellular complex interface.