We present 24 μm and 70 μm images of a non-radiative shock in the Cygnus Loop supernova remnant, obtained with the Multiband Imaging Photometer for Spitzer on board the Spitzer Space Telescope. The post-shock region is resolved in these images. The ratio of the 70 μm to the 24 μm flux rises from about 14 at a distance 0. 1 behind the shock front to about 22 in a zone 0. 75 further downstream, as grains are destroyed in the hot plasma. Models of dust emission and destruction using post-shock electron temperatures between 0.15 keV and 0.30 keV and post-shock densities, n H ∼ 2.0 cm −3 , predict flux ratios that match the observations. Non-thermal sputtering (i.e., sputtering due to bulk motion of the grains relative to the gas) contributes significantly to the dust destruction under these shock conditions. From the model calculations, we infer that about 35% by mass of the grains are destroyed over a 0.14 pc region behind the shock front.