We present images of the Crab synchrotron nebula obtained with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope. These data are compared with ROSAT HRI images, and with 0':5 resolution Canada-France-Hawaii Telescope (CFHT) images previously published by van den Bergh & Pritchet (1989). These data strengthen the emerging picture of the Crab as a cylindrically symmetrical object with an axis running southeast to northwest, and inclined by ~20°-30° with respect to the plane of the sky. Identification of structure very near to the pulsar which shares this symmetry helps to better establish the link between the symmetry axis of the nebula and the spin axis of the pulsar. We report the discovery of a bright knot of visible emission located 0':65 to the southeast of the pulsar, along the axis of the system. This knot and a second knot 3':8 from the pulsar appear to be present but not well resolved in the 1988 CFHT image, indicating that they are persistent structures. The inner knot is interpreted as a shock in the pulsar wind ~ 1500 AU above the pole of the pulsar. No corresponding knots are seen to the northwest of the pulsar, which may indicate that the characteristics of the wind from the two poles are not symmetrical. The closest of the "wisps" to the northwest of the pulsar appear to close into a ringlike "halo" encircling the axis of the nebula. The wisps are resolved, with widths of ~ 0':2. This allows• calculation of their volumes and volume emissivities, and in turn their equipartition fields and pressures. Equipartition pressures calculated for the knots and wisps are typically 10 to as much as 80 times the equipartition pressure calculated for the nebula as a whole. The wisps show significant substructure which changed considerably between 1988 and 1994. Previous reports of relativistic motions of the wisps were probably due to changes in the unresolved substructure of these features. Comparison of the CFHT and WFPC2 images show remarkable changes in the inner nebula, but inferences about physical conditions based on this comparison are limited by the resolution of the CFHT data and the long 5 year baseline between the images. The structure of the nebula in 1994 may be inconsistent with the recent model by Gallant & Arons (1994). Very fine fibrous texture visible in the WFPC2 image follows the structure of the X-ray torus. A puzzling anticorrelation is seen between the X-ray and visible surface brightness through part of the torus. Long contiguous low contrast features with widths of ~ 1"-2" are seen to run throughout the volume of the nebula. These features are seen to move outward through the nebula at velocities in excess of homologous expansion. These features trace the magnetic structure of the nebula; they are probably due to differences in emissivity accompanying varying degrees of departure from equipartition at roughly constant total pressure. Visible fibers "drapt< over" and appear to expand away from an X-ray counterjet to the northwest of the pulsar, supporting th...
We introduce a million-second observation of the supernova remnant Cassiopeia A with the Chandra X-ray Observatory. The bipolar structure of the Si-rich ejecta (NE jet and SW counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.
We present Hubble Space Telescope WFPC2 images of elephant trunks in the H II region M16. There are three principle results of this study. First, the morphology and stratified ionization structure of the interface between the dense molecular material and the interior of the H II region is well understood in terms of photoionization of a photoevaporative flow. Photoionization models of an empirical density profile capture the essential features of the observations, including the extremely localized region of [S II] emission at the interface and the observed offset between emission peaks in lower and higher ionization lines. The details of this structure are found to be a sensitive function both of the density profile of the interface and of the shape of the ionizing continuum. Interpretation of the interaction of the photoevaporative flow with gas in the interior of the nebula supports the view that much of the emission from H II regions may arise in such flows. Photoionization of photoevaporative flows may provide a useful paradigm for interpreting a wide range of observations of H II regions. Second, we report the discovery of a population of small cometary globules that are being uncovered as the main bodies of the elephant trunks are dispersed. Several lines of evidence connect these globules to ongoing star formation, including the association of a number of globules with stellar objects seen in IR images of M16 or in the continuum HST images themselves. We refer to these structures as evaporating gaseous globules, or "EGGs." These appear to be the same type of object as the nebular condensations seen previously in M42. The primary difference between the two cases is that in M16 we are seeing the objects from the side, while in M42 the objects are seen more nearly face-on against the backdrop of the ionized face of the molecular cloud. We find that the "evaporating globule" interpretation naturally accounts for the properties of objects in both nebulae, while avoiding serious difficulties with the competing "evaporating disk" model previously applied to the objects in M42. More generally, we find that disk-like structures are relatively rare in either nebula. Third, the data indicate that photoevaporation may have uncovered many EGGs while the stellar objects in them were still accreting mass, thereby freezing the mass distribution of the protostars at an early stage in their evolution. We conclude that the masses of stars in the cluster environment in M16 are generally determined not by the onset of stellar winds, as in more isolated regions of star formation, but rather by disruption of the star forming environment by the nearby 0 stars.
We present near and mid-infrared observations of the pulsar-wind nebula (PWN) B0540-69.3 and its associated supernova remnant made with the Spitzer Space Telescope. We report detections of the PWN with all four IRAC bands, the 24 µm band of MIPS, and the Infrared Spectrograph (IRS). We find no evidence of IR emission from the X-ray/radio shell surrounding the PWN resulting from the forward shock of the supernova blast wave. The flux of the PWN itself is dominated by synchrotron emission at shorter (IRAC) wavelengths, with a warm dust component longward of 20 µm. We show that this dust continuum can be explained by a small amount (∼ 1 − 3 × 10 −3 M ⊙ ) of dust at a temperature of ∼ 50 − 65 K, heated by the shock wave generated by the PWN being driven into the inner edge of the ejecta. This is evidently dust synthesized in the supernova. We also report the detection of several lines in the spectrum of the PWN, and present kinematic information about the PWN as determined from these lines. Kinematics are consistent with previous optical studies of this object. Line strengths are also broadly consistent with what one expects from optical line -2strengths. We find that lines arise from slow (∼ 20 km s −1 ) shocks driven into oxygen-rich clumps in the shell swept-up by an iron-nickel bubble, which have a density contrast of ∼ 100 − 200 relative to the bulk of the ejecta, and that faster shocks (∼ 250 km s −1 ) in the hydrogen envelope are required to heat dust grains to observed temperatures. We infer from estimates of heavy-element ejecta abundances that the progenitor star was likely in the range of 20-25 M ⊙ .
The launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include the initial coalignment, focusing, and characterization of the four instrument channels and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of these data and prelaunch laboratory measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.