We study the synchrotron radio emission from extra-planar regions of star forming galaxies. We use ideal magneto-hydrodynamical (MHD) simulations of a rotating Milky Way-type disk galaxy with distributed star formation sites for three star formation rates (SFRs) (0.3, 3, 30 M yr −1 ). From our simulations, we see emergence of galactic-scale magnetised outflows, carrying gas from the disk. We compare the morphology of the outflowing gas with hydrodynamic (HD) simulations. We look at the spatial distribution of magnetic field in the outflows. Assuming that a certain fraction of gas energy density is converted into cosmic ray energy density, and using information about the magnetic field, we obtain synchrotron emissivity throughout the simulation domain. We generate the surface brightness maps at a frequency of 1.4 GHz. The outflows are more extended in the vertical direction than radial and hence have an oblate shape. We further find that the matter right behind the outer shock, shines brighter in these maps than that above or below. To understand whether this feature can be observed, we produce vertical intensity profiles. We convolve the vertical intensity profile with the typical beam sizes of radio telescopes, for a galaxy located at 10 Mpc (similar to NGC 891) in order to estimate the radio scale height to compare with observations. We find that for our SFRs this feature will lie below the RMS noise limit of instruments. The radio scale height is found to be ∼ 300 − 1200 pc , depending on the resolution of the telescope. We relate the advection speed of the outer shock with the surface density of star formation as v adv ∝ Σ 0.3 SFR , which is consistent with earlier observations and analytical estimates.