Neuroprotective agents are able to defend the central nervous system against acute or chronic neuronal injuries. Even with the progress made over the last decades, most of the medications prescribed for the management of neurodegenerative diseases can only reduce their symptoms and slow down their progression. Based on natural product research, there are potential effective medicinal plants and phytochemicals for modulating neuronal functions and protecting against neurodegeneration. Plants in the genus Pistacia are also among valuable natural resources for neuroprotection research based on experiences in traditional medicine. Studies have supported the value of bioactive compounds of the genus Pistacia for central nervous system disorders such as Alzheimerʼs, Parkinsonʼs, multiple sclerosis, cerebral ischemia, depression, and anxiety. Related literature has also revealed that most of the evidence on neuroprotection in the genus Pistacia is in the form of preliminary studies, mainly including models of behavior, motor function, and memory impairments in animals, neural toxicity, cerebral ischemia and seizure models, evaluation of their effects on antioxidant and inflammatory biomarkers, amyloid β aggregation, and acetylcholinesterase as well as investigations into some cellular pathways. Along with the phytonutrients in kernels such as pistachios, various phytochemicals, mostly terpenes, and phenolic compounds have also been identified in different plant parts, in particular their oleoresins, of species in the genus Pistacia. In this review, the pharmacology of neurological effects and related molecular mechanisms of the plants belonging to the genus Pistacia and its active constituents, as well as pharmacokinetics aspects, are discussed.