Mammalian glycosylation, the process by which a cellular complement of glycans of dazzling complexity is produced, involves a minimum of 1% of the genome (in humans) and is the dominant postsynthetic modification of both proteins and lipids endowing these molecules with an extended range of structure and function. This article provides a brief outline of the metabolic process by which monosaccharides—the raw material for the construction of complex oligosaccharides—are converted into high energy nucleotide sugar “building blocks” that are in turn assembled into four major classes of mammalians carbohydrates: glycoproteins, glycolipids, GPI anchored structures, and polysaccharides. Finally, the article concludes with a brief discussion of modern methods for manipulating glycans in living cells and in animals–using synthetic, molecular biology, and “chemical biology” approaches—as early steps toward developing sugar‐based medicines.