A series of isobaric disaccharide-alditols, four derived from O-linked glycoproteins, and select trisaccharides were rapidly resolved using tandem high resolution atmospheric pressure ion-mobility time-of-flight mass spectrometry. Electrospray ionization was used to create the gas-phase sodium adducts of each carbohydrate. Using this technique it was possible to separate up to three isobaric disaccharide alditols and three trisaccharides in the gas phase.Reduced mobility values and experimentally determined ion-neutral cross sections are reported for each sodium-carbohydrate complex. These studies demonstrated that ion mobility separations at atmospheric pressure can provide a high-resolution dimension for analysis of carbohydrate ions that is complementary to traditional mass spectral (m/z) ion analysis. Combining these independent principles for separation of ions provides a powerful new bioanalytical tool for the identification of isomeric carbohydrates. In order to fully characterize oligosaccharides derived from biological sources, a number distinct of challenges must be over come. These issues arise primarily from the existence of biological oligosaccharides as sets of isomers. A number of approaches to address isomeric carbohydrate structures using mass spectrometry have been reported. These methods include periodate oxidation/borohydride reduction, followed by hydroxyl methylation or peracetylation [9, 10], derivatization of monosaccharides or short oligosaccharides with amines such as diethylenetriamine at the reducing end followed by metal complexation [11,12], or prediction of possible fragmentation pathways after permethylation [13]. Although modern mass spectrometry is an exquisite tool in itself for the separation of molecules having different m/z values, it cannot rule out the possibility that mass spectra derived from selected precursor ions are not derived from an isobaric mixture. And to complicate matters even further, it is entirely possible that the fragment ions themselves are isobars. On a fundamental level, the stereochemistry of monosaccharides, as product ions derived from a larger molecule, cannot be unambiguously established from a fragmentation pattern. Aldohexoses, for example, come in sixteen different stereochemical variants, and fragmentation data that would uniquely differentiate each of them has yet to be convincingly furnished, particularly where they are derived as product ions from larger molecules. To address the stereochemical blindness of mass spectrometry, product ions must first be separated based upon a physical principle that is not dependent upon m/z prior to fragmentation.Traditional chromatographic methods, most notably liquid and gas, have been used to provide an additional
Carbohydrates are an extremely complex group of isomeric molecules that have been difficult to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions to successive stages of MS(n) are frequently mixtures of isomers, and (2) detailed information about the anomeric configuration and location of specific stereochemical variants of monosaccharides within larger molecules has not been possible to obtain in a general way. Herein, it is demonstrated that gas-phase analyses by direct combination of electrospray ionization, ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-APIMS-TOFMS) provides sufficient resolution to separate different anomeric methyl glycosides and to separate different stereoisomeric methyl glycosides having the same anomeric configuration. Reducing sugars were typically resolved into more than one peak, which might represent separation of cyclic species having different anomeric configurations and/or ring forms. The extent of separation, both with methyl glycosides and reducing sugars, was significantly affected by the nature of the drift gas and by the nature of an adducting metal ion or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective analytical technique for the separation of isomeric methyl glycosides and simple sugars, and can be used to differentiate glycosides having different anomeric configurations.
Variation in the wavelength of irradiation in infrared multiple-photon dissociation (IR-MPD) of lithium-tagged glucose-containing disaccharide ions (1-2-, 1-3-, 1-4-, and 1-6-linked isomers of both anomeric configurations) resulted in marked differences in their mass spectral fragmentation patterns. Two-dimensional plots of the fragment yield versus infrared wavelength for each mass spectral product ion were unique for each isomer and can be considered a spectral fingerprint. Individual product ions or diagnostic ratios of key product ions can be optimized at specific IR wavelengths. The technique permits both linkage position and anomeric configuration to be assigned. The ratio of the fragments derived by cleavage at the glycosidic bond (m/z 169/187) is much enhanced for beta-anomers compared to alpha-anomers. Differences in the diagnostic product ions 169 and 187 were largest in the range of 9.0-9.4 microm, where the maximum dissociation yield was observed. Conversely, at 10.6 microm, the wavelength of nontunable CO2 lasers that accompany commercial Fourier transform ion cyclotron resonance mass spectrometers, the dissociation yield was poor and anomeric differentiation was not possible. In contrast to previous studies by collision-induced dissociation, the trends in dissociation behavior between anomers using IR-MPD are significant and allow simple diagnostic rules to be established. By depositing energy into these isobaric ions via narrow-band IR excitation, the resulting internal energy can be finely controlled, thereby obtaining high reproducibility in dissociation patterns. Given the multidimensionality of variable-wavelength IR-MPD of lithiated disaccharides, it is expected that this approach can overcome some of the current limitations in isomer differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.