2016
DOI: 10.18637/jss.v074.i02
|View full text |Cite
|
Sign up to set email alerts
|

The R Package CDM for Cognitive Diagnosis Models

Abstract: This paper introduces the R package CDM for cognitive diagnosis models (CDMs). The package implements parameter estimation procedures for two general CDM frameworks, the generalized-deterministic input noisy-and-gate (G-DINA) and the general diagnostic model (GDM). It contains additional functions for analyzing data under these frameworks, like tools for simulating and plotting data, or for evaluating global model and item fit. The paper describes the theoretical aspects of implemented CDM frameworks and it il… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
70
0
5

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
3

Relationship

1
8

Authors

Journals

citations
Cited by 117 publications
(88 citation statements)
references
References 27 publications
0
70
0
5
Order By: Relevance
“…The DINA model was estimated and evaluated with the R (R Core Team 2015) package CDM (George et al 2016). As suggested by de la Torre and Minchen (2014) most criteria that have been shown useful in the (traditional) IRT context can be adapted to CDMs.…”
Section: Analysis Methodsmentioning
confidence: 99%
“…The DINA model was estimated and evaluated with the R (R Core Team 2015) package CDM (George et al 2016). As suggested by de la Torre and Minchen (2014) most criteria that have been shown useful in the (traditional) IRT context can be adapted to CDMs.…”
Section: Analysis Methodsmentioning
confidence: 99%
“…In terms of item fit, a mean root mean square error of approximation (RMSEA) value (Kunina‐Habenicht, Rupp, & Wilhelm, ) of .046 indicates a good fit of the tasks, whereas the mean item discrimination of .398 suggests there is room for improvement. In terms of item discrimination, a task with a discrimination value close to or greater than 1 would indicate a good separation between students with low and high abilities (George, Robitzsch, Kiefer, Groß, & Ünlü, ).…”
Section: Resultsmentioning
confidence: 99%
“…Para la comparación de modelos y evaluar la bondad de ajuste se utilizó el entorno de programación R (R Core Team, 2017), en concreto los paquetes Cognitive Diagnosis Modeling, CDM (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016) y G-DINA: The generalized DINA model framework (Ma & de la Torre, 2018).…”
Section: Comparación De Los Modelosunclassified
“…No ocurre con todos los ítems y se aprecian incluso valores negativos. En este último caso, el ítem viola la condición de monotonicidad < 1 − , que asegura que la probabilidad de responder correctamente un ítem, cuando se dominan todos los atributos cognitivos y sin que haya distracción, es mayor que la probabilidad de responder correctamente mediante conjetura aun cuando se carezca de dominio sobre al menos uno de los atributos requeridos (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016). Los ítems con valores negativos deben ser eliminados Tabla 2.…”
Section: Habilidades Lingüísticasunclassified