In this paper, we consider an N -server queueing model with homogeneous servers in which customers arrive according to a stationary Poisson arrival process. The service times are exponentially distributed. Two new customer's service disciplines assuming simultaneous service of arriving customer by all currently idle servers are discussed. The steady state analysis of the queue length and sojourn time distribution is performed by means of the matrix analytic methods. Numerical examples, which illustrate advantage of introduced disciplines comparing to the classical one, are presented.