Scholarly journals are often blamed for a gender gap in publication rates, but it is unclear whether peer review and editorial processes contribute to it. This article examines gender bias in peer review with data for 145 journals in various fields of research, including about 1.7 million authors and 740,000 referees. We reconstructed three possible sources of bias, i.e., the editorial selection of referees, referee recommendations, and editorial decisions, and examined all their possible relationships. Results showed that manuscripts written by women as solo authors or coauthored by women were treated even more favorably by referees and editors. Although there were some differences between fields of research, our findings suggest that peer review and editorial processes do not penalize manuscripts by women. However, increasing gender diversity in editorial teams and referee pools could help journals inform potential authors about their attention to these factors and so stimulate participation by women.
Abstract. The process of classifying scholarly outputs is crucial to ensure timely access to knowledge. However, this process is typically carried out manually by expert editors, leading to high costs and slow throughput. In this paper we present Smart Topic Miner (STM), a novel solution which uses semantic web technologies to classify scholarly publications on the basis of a very large automatically generated ontology of research areas. STM was developed to support the Springer Nature Computer Science editorial team in classifying proceedings in the LNCS family. It analyses in real time a set of publications provided by an editor and produces a structured set of topics and a number of Springer Nature Classification tags, which best characterise the given input. In this paper we present the architecture of the system and report on an evaluation study conducted with a team of Springer Nature editors. The results of the evaluation, which showed that STM classifies publications with a high degree of accuracy, are very encouraging and as a result we are currently discussing the required next steps to ensure large-scale deployment within the company.
In this paper we review several novel approaches for research evaluation. We start with a brief overview of the peer review, its controversies, and metrics for assessing efficiency and overall quality of the peer review. We then discuss five approaches, including reputation-based ones, that come out of the research carried out by the LiquidPub project and research groups collaborated with LiquidPub. Those approaches are alternative or complementary to traditional peer review. We discuss pros and cons of the proposed approaches and conclude with a vision for the future of the research evaluation, arguing that no single system can suit all stakeholders in various communities.
Ontologies of research areas are important tools for characterizing, exploring, and analyzing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 14K topics and 162K semantic relationships. It was created by applying the Klink-2 algorithm on a very large data set of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO, we have also released the CSO Classifier, a tool for automatically classifying research papers, and the CSO Portal, a Web application that enables users to download, explore, and provide granular feedback on CSO. Users can use the portal to navigate and visualize sections of the ontology, rate topics and relationships, and suggest missing ones. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various research communities engaged with scholarly data.
Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontologybased recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topiccentric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.