Abstract. Despite the large number and variety of tools and services available today for exploring scholarly data, current support is still very limited in the context of sensemaking tasks, which go beyond standard search and ranking of authors and publications, and focus instead on i) understanding the dynamics of research areas, ii) relating authors 'semantically' (e.g., in terms of common interests or shared academic trajectories), or iii) performing fine-grained academic expert search along multiple dimensions. To address this gap we have developed a novel tool, Rexplore, which integrates statistical analysis, semantic technologies, and visual analytics to provide effective support for exploring and making sense of scholarly data. Here, we describe the main innovative elements of the tool and we present the results from a task-centric empirical evaluation, which shows that Rexplore is highly effective at providing support for the aforementioned sensemaking tasks. In addition, these results are robust both with respect to the background of the users (i.e., expert analysts vs. 'ordinary' users) and also with respect to whether the tasks are selected by the evaluators or proposed by the users themselves.
For guidance on citations see FAQs.
Abstract. The amount of scholarly data available on the web is steadily increasing, enabling different types of analytics which can provide important insights into the research activity. In order to make sense of and explore this large-scale body of knowledge we need an accurate, comprehensive and up-todate ontology of research topics. Unfortunately, human crafted classifications do not satisfy these criteria, as they evolve too slowly and tend to be too coarsegrained. Current automated methods for generating ontologies of research areas also present a number of limitations, such as: i) they do not consider the rich amount of indirect statistical and semantic relationships, which can help to understand the relation between two topics -e.g., the fact that two research areas are associated with a similar set of venues or technologies; ii) they do not distinguish between different kinds of hierarchical relationships; and iii) they are not able to handle effectively ambiguous topics characterized by a noisy set of relationships. In this paper we present Klink-2, a novel approach which improves on our earlier work on automatic generation of semantic topic networks and addresses the aforementioned limitations by taking advantage of a variety of knowledge sources available on the web. In particular, Klink-2 analyses networks of research entities (including papers, authors, venues, and technologies) to infer three kinds of semantic relationships between topics. It also identifies ambiguous keywords (e.g., "ontology") and separates them into the appropriate distinct topics -e.g., "ontology/philosophy" vs. "ontology/semantic web". Our experimental evaluation shows that the ability of Klink-2 to integrate a high number of data sources and to generate topics with accurate contextual meaning yields significant improvements over other algorithms in terms of both precision and recall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.