For guidance on citations see FAQs.
Ontologies of research areas are important tools for characterizing, exploring, and analyzing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 14K topics and 162K semantic relationships. It was created by applying the Klink-2 algorithm on a very large data set of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO, we have also released the CSO Classifier, a tool for automatically classifying research papers, and the CSO Portal, a Web application that enables users to download, explore, and provide granular feedback on CSO. Users can use the portal to navigate and visualize sections of the ontology, rate topics and relationships, and suggest missing ones. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various research communities engaged with scholarly data.
Technologies such as algorithms, applications and formats are an important part of the knowledge produced and reused in the research process. Typically, a technology is expected to originate in the context of a research area and then spread and contribute to several other fields. For example, Semantic Web technologies have been successfully adopted by a variety of fields, e.g., Information Retrieval, Human Computer Interaction, Biology, and many others. Unfortunately, the spreading of technologies across research areas may be a slow and inefficient process, since it is easy for researchers to be unaware of potentially relevant solutions produced by other research communities. In this paper, we hypothesise that it is possible to learn typical technology propagation patterns from historical data and to exploit this knowledge i) to anticipate where a technology may be adopted next and ii) to alert relevant stakeholders about emerging and relevant technologies in other fields. To do so, we propose the Technology-Topic Framework, a novel approach which uses a semantically enhanced technology-topic model to forecast the propagation of technologies to research areas. A formal evaluation of the approach on a set of technologies in the Semantic Web and Artificial Intelligence areas has produced excellent results, confirming the validity of our solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.