Shigella flexneri is the major cause of bacterial shigellosis in developing countries. S. flexneri is divided into at least 19 serotypes, the majority of which are modifications of the same basic O-antigen by glucosylation and/or O-acetylation of its sugar residues by phage encoded serotype-converting genes. Recently, a plasmid encoded phosphoethanolamine (PEtN) modification of the O-antigen has been reported, which is responsible for the presence of the MASF IV-1 determinant and results in conversion of traditional serotypes X, 4a and Y to novel serotypes Xv, 4av and Yv, respectively. In this study, we characterized 19 serotype Yv strains isolated in China. A variant of the O-antigen phosphoethanolamine transferase gene opt (formerly called lpt-O) carried by a pSFxv_2-like plasmid was found in serotype Yv strains, which specifies the phosphorylation pattern on the O-antigen of this serotype. For the majority of the O-antigen units, the PEtN modification occurs on RhaIII, while for a minority, modifications occur on both RhaII and RhaIII. Serotype-specific gene detection and PFGE analysis suggested that these serotype Yv isolates were originated from serotypes Y, Xv and 2a by acquisition of an opt-carrying plasmid and/or inactivation of serotype-specific gene gtrII or gtrX. These data, combined with those of serotypes Xv and 4av reported earlier, demonstrate that the plasmid-encoded PEtN modification is an important serotype conversion mechanism in S. flexneri, in addition to glucosylation and O-acetylation.