Assessing data analysis routines (DARs) for microplastics (MP) identification in Fourier-transform infrared (FTIR) images left the question ‘Do we overlook any MP particles in our sample?’ widely unanswered. Here, a reference image of microplastics, RefIMP, is presented to answer this question. RefIMP contains over 1200 MP and non-MP particles that serve as a ground truth that a DAR’s result can be compared to. Together with our MatLab® script for MP validation, MPVal, DARs can be evaluated on a particle level instead of isolated spectra. This prevents over-optimistic performance expectations, as testing of three hypotheses illustrates: (I) excessive background masking can cause overlooking of particles, (II) random decision forest models benefit from high-diversity training data, (III) among the model hyperparameters, the classification threshold influences the performance most. A minimum of 7.99% overlooked particles was achieved, most of which were polyethylene and varnish-like. Cellulose was the class most susceptible to over-segmentation. Most false assignments were attributed to confusion of polylactic acid for polymethyl methacrylate and of polypropylene for polyethylene. Moreover, a set of over 9000 transmission FTIR spectra is provided with this work, that can be used to set up DARs or as standard test set.