Arbuscular mycorrhizal (AM) fungi can establish mutualistic symbioses with most terrestrial plants and therefore play a crucial role in the re-vegetation and rehabilitation of degraded ecosystems. Yet, little information is available on AM fungal communities associated with dominant tree species in the semi-arid region of the Loess Plateau, Northwest China. In this study, topsoil (0–20 cm) and subsoil (20–40 cm) samples were collected from the rhizosphere of five dominant tree species in northern Shaanxi Province, to investigate the distribution and diversity of their associated AM fungi. The tree species were Hippophae rhamnoides Linn., Juniperus communis L., Populus cathayana Rehd., Robinia pseudoacacia L., and Salix matsudana Koidz. In total, 24 AM fungal species of eight genera were isolated from the rhizosphere soil samples and identified based on their spore morphology. Funneliformis and Funneliformis monosporum were respectively the most abundant genus and species of AM fungi. The distribution and diversity of AM fungi differed among the five tree species and also between the two soil depths. Across different tree species, the spore density of AM fungi varied from 2.85 to 15.32 spores g−1 fresh soil, with a species richness of 3–7, Shannon–Wiener index of 0.81–1.08, and evenness index of 0.30–0.53. The mycorrhizal colonization rate had a significant negative correlation with both the Shannon-Wiener index and species richness, whereas it was positively correlated with the evenness index. Permutational multivariate analysis of variance, non-metric multidimensional scaling, and structural equation modeling revealed that tree species, rather than soil depth or its interactions with tree species, had significant effects on the composition of AM fungal communities. In conclusion, the distribution and diversity of AM fungi associated with the dominant tree species were mainly affected by host tree species identity in the semi-arid ecosystem. Claroideoglomus etunicatum (W.N. Becker & Gerdemann) C. Walker & A. Schüßler and Glomus reticulatum Bhattacharjee & Mukerji appeared to be promising candidates for ecological restoration in the Loess Plateau region because of their adaptation to its semi-arid conditions with a broad spectrum of host tree species.