Obesity, which affects over one-third of reproductive-age women, has negative effects on reproduction and results in oocyte defects in both mice and humans. In this study, we used a mouse model to examine whether the adverse effects of an obesogenic diet, specifically abnormal oocyte spindle formation, mitochondrial metabolism, and lipid accumulation, can be reversed by return to normal weight and metabolic profile. Female C57BL6/J mice were placed on either a high-fat diet (HFD; 35.8% fat and 20.2% protein by nutritional content) or an isocaloric control diet (CD; 13% fat and 25% protein) for six weeks. All mice were then maintained on CD for eight weeks. We found that whereas metabolic parameters (weight, glucose tolerance, and cholesterol levels) of the HFD mice returned to normal after this “diet reversal” period, several oocyte defects were not reversible. Oocytes from the diet reversal mice demonstrated a significantly higher percentage of abnormal meiotic spindles than those from control mice. The HFD diet reversal GV oocytes also had lower mitochondrial membrane potential, lower levels of ATP and citrate, and higher percentages of abnormal lipid accumulation and distribution and abnormally distributed mitochondria than oocytes from control mice. Thus, despite normalization of weight, glucose utilization, and cholesterol levels eight weeks after switching from a high fat to a regular chow, oocytes from diet reversal mice exhibited significantly higher rates of meiotic spindle, lipid, and mitochondrial defects than found in mice maintained on regular chow. These results suggest that the negative effects of an obesogenic diet on oocyte quality are not as reversible as the overall metabolic parameters. These data may provide better insight when counseling obese women regarding reproductive options and success.