Early diabetes research is hampered by limited availability, variable quality and instability of human pancreatic islets in culture. Little is known about the human β cell secretome, and recent studies question translatability of rodent β cell secretory profiles. Here, we verify representativeness of EndoC-βH1, one of the most widely used human β cell lines, as a translational human β cell model based on omics and characterize the EndoC-βH1 secretome. We profiled EndoC-βH1 cells using RNA-seq, Data Independent Acquisition (DIA) and Tandem Mass Tag proteomics of cell lysate. Omics profiles of EndoC-βH1 cells were compared to human β cells and insulinomas. Secretome composition was assessed by DIA proteomics. Agreement between EndoC-βH1 cells and primary adult human β cells was ~90% for global omics profiles as well as for β cell markers, transcription factors and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-βH1 cells compared to adult β cells. Consistently, similarity was slightly higher with benign non-metastatic insulinomas. EndoC-βH1 secreted 671 proteins in untreated baseline state and 3,278 proteins when stressed with non-targeting control siRNA, including known β cell hormones INS, IAPP, and IGF2. Further, EndoC-βH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. Unexpectedly, exosomes appeared to be a major mode of secretion in EndoC-βH1 cells. We believe that secretion of exosomes and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.