Purpose
This study aims to investigate the reliability issues of microvoid cracks in solder joint packages exposed to thermal cycling fatigue.
Design/methodology/approach
The specimens are subjected to JEDEC preconditioning level 1 (85 °C/85%RH/168 h) with five times reflow at 270°C. This is followed by thermal cycling from 0°C to 100°C, per IPC-7351B standards. The specimens' cross-sections are inspected for crack growth and propagation under backscattered scanning electronic microscopy. The decoupled thermomechanical simulation technique is applied to investigate the thermal fatigue behavior. The impacts of crack length on the stress and fatigue behavior of the package are investigated.
Findings
Cracks are initiated from the ball grid array corner of the solder joint, propagating through the transverse section of the solder ball. The crack growth increases continuously up to 0.25-mm crack length, then slows down afterward. The J-integral and stress intensity factor (SIF) values at the crack tip decrease with increased crack length. Before 0.15-mm crack length, J-integral and SIF reduce slightly with crack length and are comparatively higher, resulting in a rapid increase in crack mouth opening displacement (CMOD). Beyond 0.25-mm crack length, the values significantly decline, that there is not much possibility of crack growth, resulting in a negligible change in CMOD value. This explains the crack growth arrest obtained after 0.25-mm crack length.
Practical implications
This work's contribution is expected to reduce the additional manufacturing cost and lead time incurred in investigating reliability issues in solder joints.
Originality/value
The work investigates crack propagation mechanisms of microvoid cracks in solder joints exposed to moisture and thermal fatigue, which is still limited in the literature. The parametric variation of the crack length on stress and fatigue characteristics of solder joints, which has never been conducted, is also studied.