2011
DOI: 10.1007/s10037-011-0062-x
|View full text |Cite
|
Sign up to set email alerts
|

The importance of spatial autocorrelation for regional employment growth in Germany

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2013
2013
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 24 publications
0
4
0
Order By: Relevance
“…The results of the Moran's test computed on the residuals of the presented models suggesting spatial autocorrelation, confirm the importance of spatial relationships among the regions under consideration. This is not new in the literature, since previous studies (i.e., Niebuhr, ; Zierahn, ) have found that labour market dynamics in neighbour regions are interrelated. If not adequately modelled, the presence of spatial dependence and heterogeneity in cross‐section estimates, can affect the reliability of results (Anselin, ; Arbia, ; Piras & Arbia, ).…”
Section: Resultsmentioning
confidence: 85%
“…The results of the Moran's test computed on the residuals of the presented models suggesting spatial autocorrelation, confirm the importance of spatial relationships among the regions under consideration. This is not new in the literature, since previous studies (i.e., Niebuhr, ; Zierahn, ) have found that labour market dynamics in neighbour regions are interrelated. If not adequately modelled, the presence of spatial dependence and heterogeneity in cross‐section estimates, can affect the reliability of results (Anselin, ; Arbia, ; Piras & Arbia, ).…”
Section: Resultsmentioning
confidence: 85%
“…where n is the sample size, h and i are the locations, W hi is the matrix's size, and W is the sum of values. The distance function is w hi ; y h equals one and the particular distance groups are y i where y h y i and 0 in all other cases; y h , y i are the values of the variables (Coetzee and Kleynhans 2018a;Zierahn 2012).…”
Section: Applying Moran's I-statisticmentioning
confidence: 99%
“…According to Zierahn (). the growth rate of unemployment in one region is interrelated with the employment growth in another region because of a productivity effect.…”
Section: Spillovers In Local Performancementioning
confidence: 99%