Two-dimensional (2D) molybdenum disulfide (MoS2) films with a tunable bandgap hold great promise for next-generation electronic and optoelectronic devices. Synthesis of large areas of high-quality MoS2 monolayers lacks experimental reproducibility. Moreover, the outcome of MoS2 growth by chemical vapor deposition is dependent on several interconnected growth parameters. In this study, we present results of MoS2 monolayer growth by strategically placing water droplets on the growth substrate and/or in the source prior to its loading in the growth chamber. The volume and distribution of water on the growth substrate and in the source had a direct impact on the morphology of the as-grown MoS2. Characterized by scanning electron microscopy (SEM), Raman microscopy, and atomic force microscopy (AFM), the number and size of MoS2 layers as well as its distribution on the growth substrate were found to have a strong dependence on the positioning of the water droplet. This study on MoS2 monolayer growth using water droplets as a promoter provides a simple and reproducible experimental technique enabling growth with high reliability.