2015
DOI: 10.1016/j.msea.2015.04.006
|View full text |Cite
|
Sign up to set email alerts
|

The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 34 publications
(6 citation statements)
references
References 31 publications
0
5
0
1
Order By: Relevance
“…20,21 Reinforcing chitosan with carbon nanotubes (CNTs) has been shown to enhance its thermo-mechanical properties. [28][29][30][31][32] Moreover, functionalized CNTs could enhance catalysis by coordinating substrate molecules through a range of non-covalent bonding interactions as well as by enhancing the accessibility of substrate molecules. CNTs are inherently inert but easily agglomerate and entangle due to strong van der Waals interactions.…”
Section: Introductionmentioning
confidence: 99%
“…20,21 Reinforcing chitosan with carbon nanotubes (CNTs) has been shown to enhance its thermo-mechanical properties. [28][29][30][31][32] Moreover, functionalized CNTs could enhance catalysis by coordinating substrate molecules through a range of non-covalent bonding interactions as well as by enhancing the accessibility of substrate molecules. CNTs are inherently inert but easily agglomerate and entangle due to strong van der Waals interactions.…”
Section: Introductionmentioning
confidence: 99%
“…Cao 等 [48] [49] 。 图 5 C/C-SiC 复合材料制备工艺流程图 [48] Fig. 5 Flow diagram of preparation process of the C/C-SiC composite [48] Guo 等 [50][51] 以短切中间相沥青基碳纤维为增强 体,硼化锆、碳化硅、硼化铪等陶瓷粉末为基体, 利用热压工艺,分别制备了热导率为 104.7 和 93.8 W/(m• K) ) [51] 的硼化锆-碳化硅陶瓷基复合材料和硼 化铪-碳化硅陶瓷基复合材料,复合材料热导率随着 纤维体积分数的增加而降低。 作为一种新型碳材料,中间相沥青基碳纤维以 其优良的热物理性能而得到广泛应用,但其模量较 高,石墨化后质地较脆 [25] ,厚度方向需借助辅助工 艺进行穿刺编排,无法形成三维连续预制体。中间 相沥青基碳纤维增强碳化硅陶瓷基复合材料特殊的 几何结构特点,使其性能各向异性 [52] 。 2 界面优化降低界面热阻 固体和界面热传输的多尺度模拟表明,声子输 运主导的传热是多尺度的,声子将与不同特征尺寸 的结构相互作用而发生声子散射,削弱材料的热输 运能力,如点缺陷、位错、层错、孪晶边界、孔隙 以及各种微结构等 [53] 。 Li 等 [54] Li 等 [56] 研究了酚醛树脂含量对化学气相渗透 (Chemical Vapor Infiltration, CVI)和反应熔渗制备碳 纤维增强金刚石-碳化硅复合材料的微观结构和导 热性能的影响,结果表明, 酚醛树脂含量显著影响 反应熔体渗透前复合材料孔隙结构以及反应熔渗后 基体的相组成和密度,酚醛树脂含量较高时,无定 形碳(amorphous Carbon, a-C)的含量增加,金刚石与 无定形碳的非晶态界面区域增加,界面结合较差, 导致复合材料的界面热阻增加,从而降低复合材料 热导率。 如图 6 所 示 , Feng 等 [57] [57] Fig. 6 Microstructures of SiC fiber with electrodeposited CNTs and thermophysical properties of SiCf/SiC [57]…”
Section: 高导热中间相沥青基碳纤维增强碳化硅 陶瓷基复合材料unclassified
“…Increased service life could be predicted due to high σ mc . The carbon nanotubes (CNTs) were introduced into the PyC interphase of SiC/SiC via electrophoretic deposition by Feng et al [76]. The SiC/SiC with PyC interphase and CNTs-PyC interphase was signed as SiC/SiC-P and SiC/SiC-CP, respectively.…”
Section: Interface Shear Strengthmentioning
confidence: 99%