This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reactor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iteration updates the k-eigenvalue via balance, while the inner λ-eigenproblem imposes neutron balance between nodes. Efficient methods are developed for solving the inner λ-eigenvalue problem within the outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was found that the Krylov-Schur method applied to the λ-eigenvalue problem reduces Picard solver times (excluding response generation) by a factor of 2-5. Furthermore, alternative methods, including Picard acceleration schemes, Steffensen's method, and Newton's method, are developed in this paper. These approaches often yield faster k-convergence and a need for fewer k-dependent response function evaluations, which is important because response generation is often the primary cost for problems using responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was found to reduce total computational times by 2-3 compared to the unaccelerated case for problems dominated by response generation. In addition, Newton's method was found to provide nearly the same performance with improved robustness.