High entropy alloys (HEAs) are materials of great application potential and which have been extensively studied during the last two decades. As the number of possible element combinations is enormous, model materials representing certain groups of HEAs are used for the description of microstructure, properties, and deformation mechanisms. In this study, the microstructure and mechanical properties of the so-called Cantor alloy composed of Co, Cr, Fe, Mn, and Ni in equiatomic ratios prepared by various techniques (casting, melt-spinning, spark plasma sintering) were examined. The research focused on the indentation measurements, namely, the indentation size effect describing the evolution of the hardness with penetration depth. It was found that the standard Nix–Gao model can be used for this type of alloy at higher penetration depths and its parameters correlate well with microstructural observations. The Nix–Gao model deviates from the measured data at the submicrometer range and the applied modification affords additional information on the deformation mechanism.