Key message
We used marker-free technologies to study chromatin at cellular resolution. Our results show asymmetric chromatin distribution, explore chromatin dynamics during mitosis, and reveal structural differences between trichoblast and atrichoblast cell.
Abstract
The shapes, sizes, and structural organizations of plant nuclei vary considerably among cell types, tissues, and species. This diversity is dependent on various factors, including cellular function, developmental stage, and environmental or physiological conditions. The differences in nuclear structure reflect the state of chromatin, which, in turn, controls gene expression and regulates cell fate. To examine the interrelationship between nuclear structure, cell morphology, and tissue-specific cell proliferation and differentiation processes, we conducted multiple visualizations of H3K4me1, H3K9me2, 4′,6-diamidino-2-phenylindole, 5-ethynyl 2′-deoxyuridine, and SCRI Renaissance 2200, followed by subsequent quantitative analysis of individual cells and nuclei. By assigning cylindrical coordinates to the nuclei in the iRoCS toolbox, we were able to construct in situ digital three-dimensional chromatin maps for all the tissue layers of individual roots. A detailed analysis of the nuclei features of H3K4me1 and H3K9me2 in the mitotic and the elongation zones in trichoblast and atrichoblast cells at the root apical meristem revealed cell type-specific chromatin dynamics with asymmetric distribution of euchromatin and heterochromatin marks that may be associated with cell cycle and cell differentiation characteristics of specific cells. Furthermore, the spatial distribution of nuclei stained with 5-ethynyl 2′-deoxyuridine in the epidermis and cortex tissues suggests short-range coordination of cell division and nuclear migration in a linear sequence through an unknown regulatory mechanism.