Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.
The molecular mechanisms underlying gravity perception and signal transduction which control asymmetric plant growth responses are as yet unknown, but are likely to depend on the directional flux of the plant hormone auxin. We have isolated an Arabidopsis mutant of the AtPIN2 gene using transposon mutagenesis. Roots of the Atpin2::En701 null-mutant were agravitropic and showed altered auxin sensitivity, a phenotype characteristic of the agravitropic wav6-52 mutant. The AtPIN2 gene was mapped to chromosome 5 (115.3 cM) corresponding to the WAV6 locus and subsequent genetic analysis indicated that wav6-52 and Atpin2::En701 were allelic. The AtPIN2 gene consists of nine exons defining an open reading frame of 1944 bp which encodes a 69 kDa protein with 10 putative transmembrane domains interrupted by a central hydrophilic loop. The topology of AtPIN2p was found to be similar to members of the major facilitator superfamily of transport proteins. We have shown that the AtPIN2 gene was expressed in root tips. The AtPIN2 protein was localized in membranes of root cortical and epidermal cells in the meristematic and elongation zones revealing a polar localization. These results suggest that AtPIN2 plays an important role in control of gravitropism regulating the redistribution of auxin from the stele towards the elongation zone of roots.
We provide a comprehensive expression map of the different genes (TIR1/AFBs, ARFs and Aux/IAAs) involved in the signalling pathway regulating gene transcription in response to auxin in the shoot apical meristem (SAM).We demonstrate a relatively simple structure of this pathway using a high-throughput yeast two-hybrid approach to obtain the Aux/IAA-ARF full interactome.The topology of the signalling network was used to construct a model for auxin signalling and to predict a role for the spatial regulation of auxin signalling in patterning of the SAM.We used a new sensor to monitor the input in the auxin signalling pathway and to confirm the model prediction, thus demonstrating that auxin signalling is essential to create robust patterns at the SAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.