Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nonlinear excitations in a one-dimensional deformable, discrete, classical, ferromagnetic chain are numerically investigated. In the continuum limit the equations of motion are reduced to a Klein-Gordon equation, with a Remoissenet-Peyrard substrate potential. From a numerical computation of the discrete system with a suitable choice of the deformability parameters, the soliton solutions are shown to exist and move both with a monotonic oscillating (i.e. nanopteron) and a monotonic nonoscillating tail, and also with a nonoscillating tail but with a splitting propagating shape. The stability of all these various soliton shapes is confirmed numerically in a range of the reduced magnetic fields greater than for a rigid magnetic chain i.e. 0 b 0.33. From a kink-antikink and a kink-kink colliding simulation, we found various effects, including a bound state of a kink and an antikink, as well as a moving kink profile with higher topological charge that appears to be the bound state of two kinks. For some values of the deformability parameter, with a suitable choice of the initial velocity, we observed that the presence of an internal mode leads to the combination of an attractive and a repulsive phenomenon, that arises when the kink-kink collision is engaged. The fact that this collision happens only in the centre of the magnetic chain with the presence of a minimal distance between the two kinks as long as the collision is produced is also a feature of the deformability effect in the dynamics of a magnetic chain. From our results, it appears that the value of the shape parameter of the substrate potential or the modified Zeeman energy is a factor of utmost importance when modelling magnetic chains.
Nonlinear excitations in a one-dimensional deformable, discrete, classical, ferromagnetic chain are numerically investigated. In the continuum limit the equations of motion are reduced to a Klein-Gordon equation, with a Remoissenet-Peyrard substrate potential. From a numerical computation of the discrete system with a suitable choice of the deformability parameters, the soliton solutions are shown to exist and move both with a monotonic oscillating (i.e. nanopteron) and a monotonic nonoscillating tail, and also with a nonoscillating tail but with a splitting propagating shape. The stability of all these various soliton shapes is confirmed numerically in a range of the reduced magnetic fields greater than for a rigid magnetic chain i.e. 0 b 0.33. From a kink-antikink and a kink-kink colliding simulation, we found various effects, including a bound state of a kink and an antikink, as well as a moving kink profile with higher topological charge that appears to be the bound state of two kinks. For some values of the deformability parameter, with a suitable choice of the initial velocity, we observed that the presence of an internal mode leads to the combination of an attractive and a repulsive phenomenon, that arises when the kink-kink collision is engaged. The fact that this collision happens only in the centre of the magnetic chain with the presence of a minimal distance between the two kinks as long as the collision is produced is also a feature of the deformability effect in the dynamics of a magnetic chain. From our results, it appears that the value of the shape parameter of the substrate potential or the modified Zeeman energy is a factor of utmost importance when modelling magnetic chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.