Remaining seated for extended periods increases the risk health issues and discomfort perception. Consequently, the seat-pan design is crucial and could be mainly influenced by two factors: pressure distribution and seat contour. For seat pan discomfort, the lower average pressure is accompanied by less discomfort. Moreover, a seat contour with a large contact area is correlated with more comfort. Thus, a shaped cushion had been accurately designed (Virtual Prototype) and realized (Physical Prototype) aiming to translate the pressure distribution due to interaction between seat and buttock in a geometric shape, suitable for the international population (including P5 females and P95 males). With this shape, the pressure should be more uniform and lower, the contact area at interface bigger, and the perceived comfort higher. Both Virtual and Physical Prototype design had been described in this paper through a repeatable and straightforward approach. Also, experiments had been performed to validate the hypothesis through a comparison with a standard flat cushion. Results showed the goal of the design had been reached: the shaped cushion scored less pressure distribution and higher contact area than the flat cushion.