ZnO is an exciting material for photocatalysis applications due to its high activity, easy accessibility of raw materials, low production costs, and nontoxic. Several ZnO nano and microstructures can be obtained, such as nanoparticles, nanorods, micro flowers, microspheres, among others, depending on the preparation method and conditions. ZnO is a wide bandgap semiconductor presenting massive recombination of the generated charge carriers, limiting its photocatalytic efficiency and stability. It is common to mix it with metal, metal oxide, sulfides, polymers, and nanocarbon-based materials to improve its photocatalytic behavior. Therefore, ZnO–nanocarbon composites formation has been a viable alternative that leads to new, more active, and stable photocatalytic systems. Mainly, graphene is a well-known two-dimensional material, which could be an excellent candidate to hybridize with ZnO due to its excellent physical and chemical properties (e.g., high specific surface area, optical transmittance, and thermal conductivity, among others). This review analyses ZnO–graphene nanocomposites’ recent advances, addressing the synthesis methods and the resulting structural, morphological, optical, and electronic properties. Moreover, we examine the ZnO–graphene composites’ role in the photocatalytic degradation of organic/inorganic pollutants.