In this paper for the first time, a 60 GHz bidirectional Millimeter Wave (MM-Wave) Radio over Fiber (RoF) transmission through a new frequency dual 16-tupling of 3.75 GHz local oscillator (LO) is demonstrated. The proposed system is constructed with parallel combination of two cascaded stages of MZMs. The upper cascaded stage and the Lower cascaded stages are biased at the Maximum Transmission Point (MATP). By suitable adjustments of LO phase and amplitude, optical sidebands with spacing of 8 times the input LO frequency is generated. These sidebands are then separated using filters to achieve dual 16-tupling. A good agreement between numerical derivations and the simulation results are achieved. Further, a simulation is performed to access the dual bidirectional transmission performance for the double and single tone modulation with 2.5 Gbps data transmission. The transmission distance is limited to 25 km for the double tone modulation due to bit walk of effect. A 60 km link distance is achieved with single tone modulation. The dispersion induced power penalties less than 0. 5 dB at 10 −9 BER is observed for both up and down streams.