In this paper, we built a mathematical model to study the influence of the initial stress on propagation of longitudinal waves in a hollow infinite circular cylinder in the presence of an axial initial magnetic field. The elastic cylinder is assumed to be made of a tetragonal system material. The problem is described by the equations of elasticity, taking into account the effect of the initial stress and the electro-magnetic equations of Maxwell. This requires the solution of the equations of motion in cylindrical coordinates with the z-axis directed along the axis of the cylinder. The displacement components will be obtained by founding the analytical solutions of the motion's equations. The frequency equations have been obtained in the form of a determinant involving Bessel functions. The roots of the frequency equation give the values of the characteristic circular frequency parameters of the first three modes for various geometries when the initial hydrostatic stress is compression or tension. These roots, which correspond to various modes, are numerically calculated and presented graphically. This study shows that waves in a solid body propagating under the influence of an initial stress can differ significantly from those propagating in the absence of the initial stress. The results of this research are used in analyzing the relationship between magnetic field, the initial stress and the frequency equation and could lead to discussions for using the magnetic field and the initial stress in ultrasound imaging.