In this paper, we investigated the influence of initial stress on the frequency equation of flexural waves in a transversely isotropic circular cylinder permeated by a magnetic field. The problem is represented by the equations of elasticity taking into account the effect of the magnetic field as given by Maxwell's equations in the quasi‐static approximation. The free stress conditions on the inner and outer surfaces of the hollow circular cylinder were used to form a frequency equation in terms of the wavelength, the cylinder radii, the initial stress and the material constants. The frequency equations have been derived in the form of a determinant involving Bessel functions and its roots given the values of the characteristic circular frequency parameters of the first three modes for various geometries. These roots, which correspond to various modes, have been verified numerically and represented graphically in different values for the initial stress. It is recognized that the flexural elastic waves in a solid body propagated under the influence of initial stress can be differentiated in a clear manner from those propagated in the absence of an initial stress. We also observed the initial stress has a great effect on the propagation of magnetoelastic flexural waves. Therefore this research is theoretically useful to convey information on electromagnetic properties of the material: for example through a precise measurement of the surface current induced by the presence of the magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.