This study verified pollution levels through evaluation of the Sediment Quality Guidelines (SQGs), pollution load index (PLI), and potential ecological risk index (PERI) by analyzing the concentrations of heavy metals in sediments of an urban‒agricultural watershed in the Yeongsan River basin, South Korea. Statistical analyses were performed to determine the relationships between pollution levels and land use, and potential sources of pollution were identified. For spatial distributions, Pb, Zn, Cu, Cd, and Hg concentrations were highest at mid-upstream, but As, Cr, and Ni concentrations were similar at most sites. The polluted sites, which showed the potential toxicity toward benthic organisms in comparison to SQGs, were most frequently observed at mid-upstream. Moreover, PLI and PERI evaluations also confirmed levels of high anthropogenic pollution and the potential ecological risk at mid-upstream. The mid-upstream sites with high heavy metal pollutions showed high correlations with urban land use, which showed the highest distribution, implying a close relationship with anthropogenic impacts such as high population density and industrial complexes. Statistical analyses also confirmed that high heavy metal concentrations in the mid-upstream were closely related to urban land use. These findings suggest that urban areas are highly likely to cause anthropogenic heavy metal pollution in sediments as point or non-point sources such as domestic sewage and industrial wastewater flow into rivers.