Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N 2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying *Manuscript Click here to view linked References M A N U S C R I P T
A C C E P T E D ACCEPTED MANUSCRIPT2 the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy.In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation.