A series of aggregation‐induced emission (AIE) fluorescent gelators (TPE‐Cn‐Chol) were synthesized by attaching tetraphenylethylene (TPE) to cholesterol through an alkyl chain. The properties of the gel, nano‐/microaggregate, and condensed phases were studied carefully. TPE‐Cn‐Chol molecules form AIE fluorescent gels in acetone and in DMF. Their fluorescence can be reversibly switched between the “on” and “off” states by a gel–sol phase transition upon thermal treatment. The AIE properties of aggregated nano‐/microstructures in acetone/water mixtures with different water fractions were studied by using fluorescence spectrometry and scanning electron microscopy (SEM). In different acetone/water mixtures, the TPE‐Cn‐Chol molecules formed different nano‐/microaggregates, such as rodlike crystallites and spherical nanoparticles that showed different fluorescence colors. Finally, the condensed phase behavior of TPE‐Cn‐Chol was studied by using polarizing microscopy (POM), differential scanning calorimetry (DSC), fluorescence spectrometry, fluorescence optical microscopy, and wide‐angle X ray scattering (WAXS). The clover‐shaped TPE unit introduced into the rodlike cholesterol mesogen inhibits not only the formation of a liquid‐crystal phase but also recrystallization upon cooling from the isotropic liquid phase. Very interestingly, TPE‐Cn‐Chol molecules in the condensed state change their fluorescence color under external stimuli, such as melting, grinding, and solvent fuming. The phase transition is the origin of these thermo‐, mechano‐, and vapochromic properties. These findings offer a simple and interesting platform for the creation of multistimuli‐responsive fluorescent sensors.