A mid-infrared (MIR) supercontinuum (SC) has been demonstrated in a low-loss telluride glass fiber. The doublecladding fiber, fabricated using a novel extrusion method, exhibits excellent transmission at 8-14 μm: < 10 dB/m in the range of 8-13.5 μm and 6 dB/m at 11 μm. Launched intense ultrashort pulsed with a central wavelength of 7 μm, the step-index fiber generates a MIR SC spanning from ß2.0 μm to 16 μm, for a 40-dB spectral flatness. This is a fresh experimental demonstration to reveal that telluride glass fiber can emit across the all MIR molecular fingerprint region, which is of key importance for applications such as diagnostics, gas sensing, and greenhouse CO 2 detection.
Although some bright, organic mechanoluminescence (ML) luminogens with aggregation‐induced emission properties and twisted molecular structures are recently reported, those with planar structures and bright ML and their related effective design strategies are not yet explored, partially due to aggregation‐caused quenching in luminogens with planar structures. Herein, using the unique solid‐state packing style of pyrene, bright dual monomer‐excimer‐ML and excimer‐ML from two pyrene derivatives (Py‐Bpin and Py‐Br) with a simple, planar molecular structure are reported for the first time, and two analogs of pyrene and Py‐H are used for comparison. These four luminogens display similar optical properties in dilute solution but different luminescent properties in the solid state, mainly due to their different molecular packing. Interestingly, pyrene is mechanochromism (MC)‐ and ML‐inactive, while Py‐H is MC‐active, Py‐Bpin is MC‐ and ML‐active, and Py‐Br is ML‐active. The relationship between molecular packing and ML/MC properties is confirmed by analyzing single‐crystal structures and related experimental results, providing important information to further understand the mysterious ML process and opening a new way to design efficient luminogens with both MC and ML.
We have experimentally demonstrated midinfrared (MIR) supercontinuum (SC) generation in a low-loss Te-based chalcogenide (ChG) step-index fiber. The fiber, fabricated by an isolated extrusion method, has an optical loss of 2-3 dB/m at 6.2-10.3 μm and 3.2 dB/m at 10.6 μm, the lowest value reported for any Te-based ChG step-index fiber. A MIR SC spectrum (∼1.5 to 14 μm) is generated from the 23-cm fiber pumped by a 4.5 μm laser (∼150 fs, 1 kHz). To the best of our knowledge, this is the first SC experimental demonstration in Te-based ChG fiber and the broadest MIR SC generation pumped in the normal dispersion regime in the optical fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.