A mid-infrared (MIR) supercontinuum (SC) has been demonstrated in a low-loss telluride glass fiber. The doublecladding fiber, fabricated using a novel extrusion method, exhibits excellent transmission at 8-14 μm: < 10 dB/m in the range of 8-13.5 μm and 6 dB/m at 11 μm. Launched intense ultrashort pulsed with a central wavelength of 7 μm, the step-index fiber generates a MIR SC spanning from ß2.0 μm to 16 μm, for a 40-dB spectral flatness. This is a fresh experimental demonstration to reveal that telluride glass fiber can emit across the all MIR molecular fingerprint region, which is of key importance for applications such as diagnostics, gas sensing, and greenhouse CO 2 detection.
Herein, copper-tetracyanoquinodimethane (CuTCNQ) with phase-I kinetics character has been proposed as an effective cathode for potassium-ion batteries. In a voltage range of 2-4.1 V (vs. K+/K), both cuprous cations (Cu+) and organic anions (TCNQ-) are electrochemically active, and they render a three-electron redox mechanism, thereby enabling CuTCNQ to yield a high specific discharge capacity of 244 mA h g-1. Even after 50 cycles, the discharge capacity of 170 mA h g-1 is retained at 50 mA g-1. In addition, when the current density is elevated to 1000 mA g-1, the discharge capacity is still maintained at 125 mA h g-1. These test data are among the best results reported for high-potential cathodes of potassium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.